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A theorem for convolution integrals is proved and then applied to extend the 
"second zero-separation theorem" to the bridge function b(r) and direct- 
correlation tail functions d(r). This theorem allows us to exactly relate &b(r)/gr 
and Od(r)/~r at r = 0  for the hard-sphere fluid to the "contact value" of the 
radial distribution function g(r) at r =  cr +. From this we obtain immediately the 
exact values of Oh(r)~& and &d(r)/& at r = 0 through second order in number 
density p. Using our results to compare the exact and Percus-Yevick (PY) 
bridge function, we find that they differ significantly. After obtaining the bridge 
function and tail function and their derivatives at r = 0 and r = a through, we 
suggest new approximations for b(0) and d(0) as well as an analytical integral- 
equation theory to improve the PY approximation in the pure hard-sphere fluid. 
The major deficiency of that approximation has been its poor assessment of the 
cavity function inside the hard-core region. Our theory remedies this defect in a 
way that yields a y(r) that is self-consistent with respct to the virial and com- 
pressibility relations and also the two zero-separation relations involving y(r) 
and its spatial derivative at r = 0. 

KEY WORDS:  Bridge function; tail function; cavity functions; hard-sphere 
fluids; second zero-separation theorem; self-consistent theory; equation of state. 

1. I N T R O D U C T I O N  

The fundamental contributions of Howard Reiss to the scaled-particle 
theory of fluids have had a major impact on modern liquid-state chemistry 
and physics~ In particular, the conceptual insights that the scaled-particle 
picture affords as well as the accurate and simple approximations that can 
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be derived from it have helped maintain the central role that the hard- 
sphere fluid continues to play in current liquid-state theory. Here we make 
some new observations concerning hard spheres that are very much in the 
scaled-particle tradition. 

The contributions to the pair correlation function h(r) and direct 
pair correlation function c(r) that have come to be known as the 
bridge function (1 3) b(r) and tail function (4'5) d(r) play an essential role in 
improving the hypernetted chain (HNC) and Percus-Yevick (PY) 
approximations. However, not much is known about their exact analytic 
structure, due to their complexity. Even for a simple system such as the 
pure hard-sphere fluid, only the lowest-order contribution to b(r) in the 
number density p, which is of order p2, is known analytically. (6) For any 
pair potential with a hard core, the behavior of bridge functions and tail 
functions inside the core will not affect the structure factor and its trans- 
form h(r), but they do affect the cavity function y(r), which is defined as 
e~UEh(r) + 1] (u is pair potential). The value of y(0) for an important class 
of potentials (hard-sphere potentials for pure fluid and mixtures, (7) hard- 
core potentials with finite-range tails,(S) the charged hard-sphere 
potential (9)) is related to thermodynamic quantities according to "zero 
separation theorems. ''(v-9) It turns out (1) that the value of y(0) is a very 
severe test for integral-equation theories. Therefore, the values of bridge 
functions and tail functions inside the core are very important. 

By parametrizing In y(r) inside the core for a hard-sphere fluid, 
Rosenfeld and Ashcroft (1) found an analytic approximation for the bridge 
function of a pure hard-sphere fluid from computer simulation results. 
They also concluded that the bridge functions for an important class of 
pair potentials [e.g., the Lennard-Jones potential and potentials of the 
form (~/r) n] are remarkably similar to each other and to the hard-sphere 
bridge function bUS(r, p) in the sense that there exists a 21 and a 22 such 
that to a good approximation 

b( r; p, T)= bnS(21r; 22p) (1.1) 

They refer to this as the "universality of bridge functions." They further 
concluded that the PY hard-sphere bridge function is for many purposes an 
adequate approximation to the exact hard-sphere b(r) [and hence to this 
whole family of b(r)'s]. Their work has enhanced the role of the hard- 
sphere b(r) in the statistical theory of fluid and has in addition given added 
importance to the question of how well bPV(r) approximates b(r) in a hard- 
sphere system. 

In this paper we extend the second zero-separation theorem for y 
functions(7 9) to bridge functions and tail functions (Section 2). This exten- 
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ded theorem applies to systems of any pair potential with a hard core. We 
apply it here to the pure hard-sphere fluid in Section 3 as an example. One 
of our main purposes in this regard is to probe in detail the precise extent 
to which bPY(r) can be used to approximate the exact b(r) in a hard-sphere 
system. The comparison between the exact results for b'(0) and the PY 
results for b'(0) indicates that b . . . .  t is significantly different from b Pv (here 
and throughout the rest of the paper, a prime is used to denote a derivative 
with respect to r). A new approximate expression for b(0) is found (the 
CS/PY expression) and compared with bPV(0) and another approximation 
suggested by Henderson and Grundke. (4) Exact values of b(a) and d(cr) in 
the low-concentration limit are also given. In Section 4, we use a self-con- 
sistent method for pure hard spheres, which remedies the major deficiency 
of the PY equation, which is its poor assessment of the cavity function 
inside the hard-core region. To be more precise, there are two versions of 
the PY equation, as discussed in detail by Stell. (1~ In the first of these, 
referred to simply as the PY equation throughout this paper, Y0 is given by 
(2.10b) below, with d0= 0. In the second of these (referred to by Stell (1~ as 
the "series-union" approximation) y inside the core remains undetermined 
and closure for the Ornstein-Zernike equation is given in terms that only 
involve his and c o through Eq. (2.21) below. Our work extends earlier work 
by Waisman (m'3 and by Giunta et al. (s) Our method yields a new integral 
equation for y(r) that is self-consistent with respect to the virial and com- 
pressibility relations as well as the two zero-separation relations involving 
y(r) and its spatial derivative at r = 0 .  Our results are purely analytic, 
unlike those of ref. 5, and somewhat better results are obtained for y(r) 
inside the core than those of that reference. 

2. AN EXTENSION OF THE SECOND ZERO-SEPARATION 
T H E O R E M  TO THE BRIDGE A N D  TAIL F U N C T I O N S  

2.1. A Zero-Separat ion Theorem for Convolut ion Integrals 

Given any functions f l (r)  and f2(r) with fl(0), f2(0), Yl(0), and Y2(0) 
all finite (the tilde denotes a 3D Fourier transform), the three-dimensional 
convolution integral of f l ( r )  with f2(r) can be written as 

f~ * f2=-2XG(r) (2.1) 
F 

where 

fo g f r  + t G ( r ) -  td t  s d s f l ( s ) f 2 ( t )  
r tl 

3 A misprint in ref. 11 has been pointed out by Henderson et al. ~121 

(2.2) 
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Then 

dG(r) 
G'(r) - dr 

Therefore,  

Zhou and Stell 

- - -  td t  [ ( r + t ) f m ( r + t ) + ( t - r ) f l ( t - r ) ] f z ( t )  

+ td t  [ ( r + t ) f ~ ( r + t ) - ( r - t ) f l ( r - t ) ] f 2 ( t )  (2.3) 

d[f l  * f 2 ] = 2 r c d  (-G-~-) = - f l  fz  + 

It  is easy to see that,  as r ~ 0, 

2nG ' ( r )  - f l  * f2 ~ 0 

Therefore,  we can apply  L 'H6pi ta l ' s  rule to obta in  

lim d[ f l  * f 2 ]  = d[fl * f 2 ]  r + 2 ~ 6 " ( r ) l r ~ 0  
rsO dr dr ~ o 

o r  

(2.4) 

(2.5) 

d[f l  * A ]  

d 7  r ~ O 

= {0, 

--7~0.2 [ f l  ( 0.+ ) --f1(0.- )] [f2( 0.+ ) --f2(0.- )],  

where a + means  0. ___ 6 in the limit 6 ~ 0, 3 > 0. 

2.2. A Zero-Separation Theorem for Bridge and Tail Functions 

We apply  this purely mathemat ica l  result to the Orns te in -Zern ike  
(OZ)  equat ion:  

h U - cij = ~ plhil * co (2.8) 
l 

o 1 ~ 02, (2.7a) 

0.1 =0.2--0. (2.7b) 

N o w  assume fx(r )  and f2(r) each have one discontinuity at  a 1 and 0.2, 
respectively, but  are otherwise continuous.  Then,  one can obtain  (Appen-  
dix A) 

lim d[f~ �9 f2 ]  = ~G"(0)  (2.6) 
r ~ O  dr 



Hard-Sphere Fluid 1393 

where p+ is density of particles of species l and h~ and c a are the indirect 
and direct pair correlation functions, respectively. Differentiating Eq. (2.8) 
respect to r, taking the r ~ 0 limit, and using Eq. (2.7), we find 

O(h a -  ca) 

~F r ~O  
2 2 + --Tc6ij ~ p:ait gil(ai: ), (2.9a) 

l 

--7Za2 2 Pl  gil(  q + ) g+/(a + ), (2.9b) 
l 

aiCaj  if i r  j 

a i = a j = a  for all i , j  

where we have used the relation ga(r)= ha(r ) + 1, the fact that ha(r ) is - !  
inside the hard core, and the continuity of (h �9 C)a at r = a a. Also, a+j is 
defined as (ai + a/)/2, ai is the hard-core diameter of the particle of species 
i, and 6 0 is Kronecker delta. The two cases in Eq. (2.9) are not exclusive. 
The equations for other cases (e.g., nonadditive diameters) can be obtained 
easily from Eq. (2.7), but we will not pursue them here. Equation (2.9) is 
satisfied by analytical solutions of the PY hard-sphere equation, ('3) the 
MSA (mean sphere approximation) charged hard-sphere equation, <14) and 
the MSA Yukawa-sphere equation.(ll) 

The exact closure for the OZ equation can be written as 

h~/- Ca= ln(1 +ha)+f lua+ba=ln  yo+ba (2.10a) 

o r  

h~j - c a = y~ - d,j - 1 (2.10b) 

where b a is the bridge function, the negative sum of elementary graphs, 

ba(r ) - _Ea(r ) 

and 

Ya= [exp(flu0)] ga 

u a is the pair potential, fl = 1/kB T, T is temperature, kB is the Boltzmann 
constant, and d o. is the tail function, which is neglected in the PY 
approximation. If bij and d o are zero, then Eqs. (2.10a) and (2.10b) reduce 
to HNC  and PY closures, respectively. The relationship between b a and d o 
can be obtained from Eqs. (2.10a) and (2.10b) as 

b U + d o = y+j - In y~j - 1 (2.11) 

822/52/5-6-17 
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By using Eqs. (2.9), (2.10a), and (2.10b), we can easily obtain 

blj(O) = 
Y'ij(O) 7~ij~,Dl(Tilgil(Gil2 2 + ), a,v~aj if i # j  (2.12a) 
yij(O) l 

y~(O) zta2~plg.(a+)g~(a+), a~=aj=afora l l i ,  j (2.12b) 
Yij( 0 ) ! 

and 

t G.(o) = 

yo.(o) + ~6,j Y~ p , 4  ~ + ' g~t(aiz ), ~ r , # a j i f i # j  (2.13a) 
l 

y~.(O)+Tza:~pzg~z(a+)go.(a+), a~=aj=afora l l i ,  j (2.13b) 
l 

Equations (2.12a), (2.12b), (2.13a), and (2.13b) are used for the system in 
which the potential has a hard core with any continuous tail. 

We shall call Eqs. (2.12) and (2.13) the second zero-separation 
theorem for bridge functions and tail functions, respectively. For com- 
pleteness, we recall the first and second zero-separation theorems for y~j 
functions. For hard-sphere mixtures, the first zero-separation theorem is (7) 

yij(r<~ao.)=(expvi)/(piZ3i), a , ~ a j  (2.14) 

where vi = fl#i and #i is the chemical potential, 2i is the thermal wavelength, 
and a U is [aj-a,l /2.  The second theorem is (7) 

d 
- -  ao.pt ytj(a~) (2.15) dr In yo.(ao.) = -n6ij ~ 2 

l 

The zero-separation theorem for y~ functions in other systems can be 
found in refs. 8 and 9. 

2.3. The Second Zero-Separat ion  Theorem for Yij in PY and 
H N C  Approx imat ions  

For the PY approximation, we have 

dff. v ~- 0 (2.16) 

From Eq. (2.13) we immediately obtain 

t - t e a , i S  = P Y  + = 

p t a J g .  (a~l)] , a ~ r  i f  ivaj (2.17a) 

Eye(0)] P~ = 
-- na2 Z P, gPV( a +) g~Y(a + ), ai = aj = a for all i, j (2.17b) 

l 
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Equation (2.17a) in the hard-sphere mixture case has been obtained by 
Lebowitz.(15) 

For the HNC approximation, we have 

b~ yc = 0  (2.18) 

Then, from Eq. (2.12), we have an equation similar to (2.17), 

t__7~8ff 2 2 HNC + (2.19a) Plffil[gil (flit)]2, a i r  if i r  
l 

- -  7~O'2 E HNC + ) ~ H N C ( _  + Pzgil (fl go to ), a t= aj = fl for all i, j (2.19b) 
! 

The resemblance of Eq. (2.19) or (2.17) to the exact results for the hard- 
sphere fluid [Eq. (2.15)] is striking. 

Our results have extended the second zero-separation theorem (7 9) to 
the bridge functions and tail functions. From the second zero-separation 
theorem, the exact result for y~(0) is known. Therefore, for the system in 
which the second zero-separation theorem for the yij(r) functions is 
satisfied, we can obtain b~.(0) and db(0) easily. In the next section, we apply 
these exact equations to the one-component hard-sphere case. 

For completeness we note that an exact closure for the OZ equation 
alternative to (2.10b) that does not involve Y0 is given by 

cu= f~j(g U - co. ) + (f, j+ 1)d,j (2.20) 

The series-union approximation, (m) weaker than the original PY 
approximation, is given by 

( f o +  1)d,j= 0 (2.21) 

where fo  = e x p ( - f l u o ) -  1. 

3. L IM IT ING RESULTS OF THE BRIDGE A N D  TAIL 
F U N C T I O N S  FOR A PURE H A R D - S P H E R E  FLUID 

3.1. Exact Results for b ' (0 )  and d ' (0 )  

Next, we consider the simplest model among those described by our 
theories: the one-component hard-sphere model. For this system, a relation 
between y'(0) and y(a) is well known~7): 

g ln_y(r) y ' (O)_  6qy(fl____) (3.1) 
Or r ~ O  y ( O )  (7" 
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where r/ is the packing fraction (r/~-~Tzpo "3) and a is the hard-sphere 
diameter. 

Substituting Eq. (3.1) into (2.12), we obtain the exact result 

b ' ( O )  = - - -  y ( a ) [ y ( a ) -  1] (3.2) 
O" 

For the PY approximation, we have, (~ from Eq. (2.11), 

beY(r) = yPV(r ) -  1 - I n  yPV(r) (3.3) 

Therefore,using Eq. (2.17), we have 

[b'(O)]PV- 6r/['YPY(~ ( 1 o" YP'7( 0 ) 1  ) (3.4) 

Very accurate results for y(o-) can be found either from simulation 
results (16) or from the Carnahan-Starling (CS) equation of state, (17) 

yCS(tr) = 1 (2 - r/) 
2 (1_,~)3 (3.5) 

as well as from the virial expansion(~8): 

~ B ~  t/~ 2 yV(tr) = 1 + -~- 
n=3 
10 18.36 8424/73 /14 ?15 1 +_~_ q + _ _ _ ~  q2 + 2 39.5 56.5 

= - -  + - - ~ -  +--~--- + - - -  (3.6) 

where B, are reduced virial coefficients. The yVV(0) and yVV(o) are well 
known, (13) 

yeY(O ) _ (1 + 2~/) 2 (3.7) 
(1 __/~)4 

yPV(a ) _ 1 (2 + q) 
2 ( l_ r / )2  (3.8) 

Substituting Eqs. (3.5) and (3.6) into (3.2), respectively, we have 

2 - q  

= --(15r/z + 64.5r/3 + 177t/4 -t- 391.5q 5 + 7591/6 

+ 1344r/7 + ...) 

~rl-b'(0)] v = --(15r/2 q- 65.04r/3 q- 180.06r/4 -k- 397.4586q 5 

+ 769.8648r/6 + ...) 

(3.9) 

(3.10) 
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Compar ing  Eq. (3.9) with (3.10), we find that, while the density expansion 
of the results obtained from the CS equat ion is exact only in the first term, 
the higher-order  terms are seen to be quite accurate. It turns out  that  the 
first term in Eqs. (3.9) and (3.10) is exactly the contr ibut ion of the first 
bridge graph (6) 

However,  if we estimate the second term in the exact expression for ab'(O) 
from a Monte  Carlo evaluat ion of the O(p 3) term of b(r), we find that  it is 
about  52 instead of 65 in Eq. (3.10) (Appendix B). This is probably  due to 
numerical  error  in the Monte  Carlo estimates of integrals and the large 
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Fig. 1. The derivative of the bridge function at r = O, -~rb'(O), as a function of packing frac- 
tion q. ( - - )  CS result; ( ) PY result; (0 )  simulation(16); ( . . . .  ) results from ref. 3; (---) 
ab~(O)q2 = 15r/2. 
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interval between two sample points (0.05/~). Substituting Eqs. (3.7) and 
(3.8) into Eq. (3.4), we have 

3 (2 + r/t2 ( (1--~)4 ~ 
cr[b'(0)] PY-  2q(1-i--L~ 1 ( ] - -~2-~ /  

= - (48r/2 + 36t/3 + ...) (3.11) 

Therefore [b '(0)]  PY does not have the right low-concentration limit. In 
Fig. 1, [b '(0)]  cs, [ ' b ' ( 0 ) ]  PY, [ b ' ( 0 ) ]  Ms (Monte Carlo and molecular 
dynamic simulation results(16)), [b '(0)]  ML (results obtained by a 
parametrization method(3)), and ab;(0)t /2= -15t/2 are plotted. 4 The plot 
shows that the two curves [b '(0)]  cs {which is almost indistinguishable in 
this figure from [b '(0)]  Ms} and [b '(0)]  Pv cross at t/~0.42, which would 
not be the case if b Pv and b . . . .  t are in the same universality class of curves 
in the sense of Rosenfeld and Ashcroft. (1) At high density, [b '(0)] PY is 
remarkably close to the exact result. Since the crossing happens at very 
high concentration, using b Pv to approximate b . . . .  t is still a reasonable 
approximation for low concentrations. However, later we will find out that 
even at low density the universality of the PY bridge function in the sense 
of ref. 1 is still only a rough approximation. 

From Eq. (2.13), we can obtain the exact result for d ' (O) ,  

67 
d ' (O)  = - - -  y C a ) [ y ( O )  - y(a) ]  (3.12) a 

The exact results for y(0) in Eq. (3.12) can be obtained by using the first 
zero-separation theorem (7) in the one-component hard-sphere system, 

p - ~ p l n y ( O ) = f l  - 1  (3.13) 

The result obtained from the CS equation of state is (4) 

In yCS(0) - 8 r / -  9~/2 + 3r/3 
(1 _~)3 

= 8~/+ 15~12 + 24~/3 + 35~/4 + 48~/5 + 63~/6 + ... (3.14) 

and the result from the virial expansion of pressure (18) is 

lnyV(0) = ~ n + l B , + l t / -  
n n = l  

395.5 6 
= 8 r / +  15t/2+24.48r/3+35.3r/4+47.4t/5+------~-r/ + - - .  (3.15) 

4 The definition of b 2 can be found in Eq. (3.20); b2q 2 is the contribution of the first bridge 
graph. 
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Substituting Eqs. (3.5) and (3.14), or (3.6) and (3.15), respectively, into 
(3.12) yields 

2 - t /  {expF8q-9t/2+3r/3] 1 2 - q  
a [a ' (0 ) ]cs=  -3r/(1--_~-) 3 [_ ( l - q )  3 J 2(i----~-) 3} 

= -(33t/2 + 337.5t/3 +2120q4 + 10594.5t/s + .-.) (3.16) 

cr[d'(0)] v = -(33t/2 + 336.96t/3 + 2124.14q 4 

+ 10648.84@ + 46539.2744t/6 + ...) (3.17) 

For comparison, the approximate expression suggested by Henderson and 
Grundke  is (4) 

= -33t /2-  3t/ a[d'(O)] HG dH~(O) 

= -(33t/2 + 102r/3 + 1199r/4 + ...) (3.18) 

where the approximate dHa(0) is given by (4) 

[.8t/C9t/2__+ 3t/3.7 1 + 4t/+ 4r/2- 4r/3 + ~14 
dHG(0) e x p  (1 - t / )  3 J (1 --1"]) 4 (3.19) 

Therefore, the [d'(0)] H~ is only good in the low-concentration limit. 

3.2. Approximate Results for b(0) ,  d(0) ,  b (a ) ,  d (a )  

We introduce the density expansions of the bridge function and the 
direct pair correlation function as follows: 

b(r)= ~ [ b , ( r ) ] q  n (3.20) 
n = 2  

c(r)-- --1 + ~ [G(r)]r/" (3.21) 
n = l  

Substituting Eqs. (3.21), (3.20), and (3.15) into (2.10a), we have, at r=0 ,  

bY(0) = -1 - c(0) - In yV(0) 

= ~ [ _ c n ( 0 ) _  n + l B .  ]qn (3.22) 
n = 2  n + 1  

For the PY approximation, we have (13) 

c r 'V(0)=-yPY(0)=- ( l+8q+30q2+76r /3+155r /4+ . . . )  (3.23) 
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which is an approximat ion  that is exact through the r/3 term. (6) Therefore, 
substituting cPY(0) into Eq. (3.22), we can obtain an approximate  form of 
b(0) in which the first two terms are exact: 

bY(0) = 15~/2 + 51.5D/3 + ..- (3.24) 

where the first term is b2(0)r/2, the contr ibut ion of the first bridge graph. (6) 
The MC value of b3(0) is 51.516, in good agreement  with the exact result 
(Appendix B). If we substitute In yCS(0) [Eq. (3.14)] and cPY(0) into 
(2.10a) at r = 0, we obtain another  approximat ion  for b(0), which we shall 
call the CS/PY approximat ion,  

qz(2r/2 -- 8/7 + 15) 
b(O)  = ( r / -  1 )4 

= 15~/2 + 52r/3 + 120t/4 + . . .  (3.25) 

This is a more  accurate expression than that  suggested by Henderson  and 
Grundke ,  (4) 

briG(O) = yCS(o) -- dHO(o) -- In yCS(O) -- 1 

3r/2(t/2 - 4 t / +  5) 

(r/-- 1 )4 

= 15r/2 q- 48r/3 q- 105r/4 + . . .  (3.26) 

where we have used Eqs. (2.11) and (3.19). The superscript H G  denotes the 
Henderson  and Grundke  results. Fo r  comparison,  bPV(0) is [Eqs. (3.3) and 
(3.7)] 

beY(0) _ (1 + 2r/) 2 1 ' In (1 + 2q)___.~ 2 
(1 _?])4 (1 __?])4 

208 3 
= 3 2 t / 2 + - ~ t /  + . . .  (3.27) 

Here, we can see again that  the PY results do not  have an accurate low- 
concentra t ion limit. In Fig. 2, the approximate  b(0) is shown as a function 
of t/. It can be seen that  beY(0) as a function of t/ is quite similar to the 
other  approximat ions  shown there. However ,  it is hard  to say what  
b . . . .  t(0) looks like. According to the calculation by Henderson  and 
Grundke ,  (4) c . . . .  t(0) is a little bit larger than cPV(0); therefore, b . . . .  t(0 ) 
should be slightly smaller than the result we obtained. The near-exact 
result obta ined in Section 4 is also shown in Fig. 2 and is seen to be close 
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Fig. 2. The bridge function at r = 0, b(0), as a function of packing fraction r/. ( - - )  Results 
from Eq. (3.25); ( - )  PY results; ( . . . .  ) results from Henderson and Grundke, Eq. (3.26); 
(�9 results from the method in the Section4.2 by using the CS equation of state; (---)  
b2(O)t/2 = 15t/z. 

to our  app rox ima te  b(0) at  low concentra t ions  and to stay between our  
b(0) and b n a ( 0 )  at high concentrat ions.  However ,  by changing the density 
of b Pv only, it is impossible  to fit b . . . .  t(0) and b ' (0)  at the same time. This 
can easily be seen by looking at the low-densi ty limit o f  the bridge function 
at r = 0 .  

By using Eq. (2.10b), we can obta in  an app rox ima te  expression for 
d(O), 

d(0) = yes(0) + cPu 

= e x p [ 8 r / - - 9 q 2 + 3 t / 3 ~  ( 2 t / + 1 )  2 
(1 I /']) 3 J ( n - - l )  4 

460 r/3 460 153.3333 = 17r/2 +--~-- + . . . ,  - - ~ - =  (3.28) 

822/52/5-6-18 
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The exact first two terms of d(0) obtained from virial coefficient are 

dV(0) = 17q 2 + 153.81333@ + . . .  (3.29) 

where we see that  the second term in the CS/PY approximat ion  for d(0) is 
equal to the exact term to within 0.3 %. 

By using the same procedure we have described above, we can obtain 
the exact low-concentra t ion limit of b(a)  and d(a):  

boy) = 2.53r/2 + 3.6r/3 + ..- (3.30) 

d(a) = 0.59q 2 + 2.65q 3 + . . .  (3.31) 

where we have used the numerical value of  C3(6). (6) The two terms in 
Eq. (3.30) agree with the analytical resul(6) and the numerical result 
(Appendix B). The first term in Eq. (3.31) was already found by Henderson 
and Grundke.  (4) 

Fo r  completeness, we give the low-concentrat ion limit of  the derivative 
of bridge function and tail function at r = a. They are ~6) 

6b'(6) = -7.9r/2 + . . .  (3.32) 

ad'(a) = -3.35t/2 + . . .  (3.33) 

4. AN A N A L Y T I C A L  S E L F - C O N S I S T E N T  E Q U A T I O N  FOR 
C A V I T Y  F U N C T I O N  OF A PURE H A R D - S P H E R E  S Y S T E M  

4.1. General  Formulas 

N o w  we set up an analytical approximat ion  for the cavity function 
y(r) of a pure hard-sphere system. We use a tail function of  the form ~5) 

a(r)= 
exp c% - , r ~< a 

n 0 

r--~exp - z  - 1  , r > a  

(4.1) 

where m = 3 in this paper. With such a tail function, the OZ equat ion 
relating h(r) and c(r) is analytically solvable/11) Thus, outside of  the core, 
y(r) is known  through  the exact relation y(r) = h(r) + 1, r >>, a, while inside 
the core, we have y(r) from the exact relation y(r)= d ( r ) -  c(r), r < a. The 
direct correlat ion function inside the core is 

br 1 (r ']  3 1 - e x p ( - z r / a )  v2COsh(zr /a) - I  
- c ( r ) = a + - - ~ + ~ t l a  \ +v zr/rr ~- 2r/aKzZexp(z) (4.2) 
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where a,b, 5 and v are constants  that satisfy complicated nonlinear 
equations,(11) and a has immediate  thermodynamic  significance: 

a = fl c~p/Op (4.3) 

This set of equations is greatly simplified (19) if y (o)  and a are known. 
Adopting the notat ion in ref. 19, we denote y(a)  as Yo- Then we have (19) 

2 
Z=c_---- ~ {(Uo+A-C)xf-A+ [ (Uo+A-C)  UoC] ~/2} (4.4) 

Z 2 

(~ r ) x J  Uo (4.5) K -  6r/(z + 2) 2 

1 - x  
v = K - -  (4.6) 

,,, - ~ x  

1 I U2 - 24r/y 2 ] (4.7) 6=-~ 2vz-  Kexp(z )  

where 

A = ( 1 - q ) Z a  (4.8) 

C -  (1 + 2t/) 2 
(1 - r / )  2 (4.9) 

Uo = 6t/yo - A + 1 (4.10) 

4 + 2 z - z  2 Uo 
x =  2 ( 2 + z )  U---~ (4.11) 

U1 = (2 -x/-C) Uo--F (4.12) 

1 [ 1 2 ] 
F - 2 x / ~  (Uo+ A-C)(Uo+ A)+-~z ( C - A )  (4.13) 

1 F z - 2  
7 = ~zz E z - - ~  + exp( - z ) ]  (4.14) 

1 Fz_2_+ 2 z - 4  l 
~zz L 4 + 2z - z 2 + exp( - z ) j  (4.15) 

(note that C is not  the direct correlation function, which we denote as c). 

s b has been used to denote a bridge function, so we use 6 here. 
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The only coefficients left to be determined are the c~ n. By demanding 
d ( r )  to be continuous at r = o up through its first derivative, we have (5) 

~0 = In K (4.16a) 

~1 = - ( z +  1) (4.16b) 

Using constraints on d(0) and d'(0), we can obtain c~2 and c~ 3, 

~2 = 3 in d(0) d'(0) 
K + a d - - ~ -  2 z -  2 (4.16d) 

_~ a'(0) 
a3 = 2 In + a ~ -  z -  1 (4.16e) 

Once we know the equation of state, the procedure for calculating 
coefficients in the above equation is as follows: 

1. The contact value of y can be obtained from the virial equation 

f l p / p -  1 
Yo  = y ( a )  - - -  (4.17) 

and the coefficient a obtained by using Eq. (4o3). 

2. Then the coefficients z, K, v, and b can be calculated by using Eqs. 
(4.4)-(4.7) with Eqs. (4.8)-(4.15). 

3. The tail function at r = 0  can be obtained from Eqs. (2.10b) and 
(4.2): 

d(0) = y(0) + c(0) = y(0) - a - v (4.18) 

where y(0) can be obtained from the equation of state by using 
Eq. (3.13). The derivative of the tail function d'(0) can be obtained 
by using Eq. (3.12). 

4. Finally, en is evaluated using Eq. (4.16). 

Thus, all the coefficients have simple analytical expressions. 
We assume that the equation of state of a pure hard-sphere system has 

the form 

p = ( 1  O)-PY PY 
- ~ c + @ ~  (4.19) 

where pPY and pPY are the pressures obtained from the compressibility 
equation and the virial equation in the PY approximation, respectively. If 
0 = 1/3, then Eq. (4.19) becomes the CS equation. However, using the CS 
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equation of state, we cannot obtain a correct d'(a),  as we shall see in Sec- 
tion 4.2. Therefore, we shall use a somewhat different approximate equation 
of state (0 = 1/4 + q/2), which can give us a better result for d(r) inside the 
core region, although it is a bit less accurate thermodynamicaly than the 
CS equation of state (it is more accurate than the PY compressibility 
equation of state, 0 = 0, however; see Fig. 3). 

4.2. Results for  the 0 = 1 / 3  Approx imat ion  

We use the CS equation as the equation of state in this section and we 
have, by following the procedure we have described, 

?]4 __41,/3 +4q2 +4q  + 1 
a = (t/-- 1 )4 (4.20) 

The contact value Yo is given by Eq. (3.5). 
We first check the low-density limit of various coefficients, 

z = 3.791 + 15.29t/+ 27.43r/2 + 37.546@ + --- (4.21) 

d(a) = K =  0.5t/2 + 2.8862r/3 + 5.88q 4 + .-. (4.22) 

ad ' (a )  = -K(z+  1)=  -(1.8955q2 + 18.58658q3 + 80.136q4 + ...) (4.23) 

When compared with the exact equation (3.31), Eq. (4.22) is seen to be 
remarkably close to the exact result considering such a rough 
approximation of d(r) outside the core. It is worth noting that the wrong 
low-density limit (0.5t/2 instead of 0.59t/2) is due to the error in the fourth 
viriat coefficients in the CS equation/n) Comparing it with Eq. (3.33), we 
see that Eq. (4.23) does not give us the correct low-concentration limit of 
d'(~). 

The low-concentration limit for the direct pair correlation functions at 
r = 0  is 

c ( 0 ) = - ( a + v ) = - ( l + 8 q + 3 0 t / 2 + 7 6 t / 3 + 1 4 9 . 3 7 t / 4 +  ...) (4.24) 

The first four terms are exact, (6) while the fifth is larger than the PY result 
(Eq. (3.23)], as expected. 6 Using Eqs. (2.10b) and (3.14), we will reproduce 
the first two terms in Eq. (3.28), 

17 2 460 3 d(O)= tt -l----~--t] +840.8g/4... (4.25) 

6 The arguments can be found in Section 3. 
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For  the median  densities, it has already been shown that  the Yukawa  
form [Eq.  (4.2)] of direct pair  correlat ion functions after fitting K and z to 
generate  "exact"  pressure and compressibi l i ty is able to reproduce the com- 
puter  s imulat ion results for a pure hard-sphere  fluid (1~) and to reproduce 
very good  direct corre la t ion functions inside the core. (5) 

In Fig. 2, the bridge function at r = 0 ,  b(0), which is calculated f rom 
d(0) by using Eq. (2.11), is plotted. The figure is discussed in Section 3. 

The tail-function approx ima t ions  are plot ted in Figs. 4 and 5. Dis- 
cussions of these figures can be found below. 

4 . 3 .  R e s u l t s  f o r  t h e  O 1 = ~ -t- ~q A p p r o x i m a t i o n  

If we use the app rox ima t ion  0 = ~ + �89 then we find that  the equat ion 
of state is 

/~p - 6r/4 - 3~/3 q- 4r/2 + 4r /+  4 

p 4(1 __~)3 
= l + 4 q + l O t / 2 + 1 8 . 2 5 t / 3 + 2 7 . 2 5 q 4 + 3 7 q s + 4 7 . 5 t / 6 +  --. (4.26) 

14 

12 

10 

I I I I I [ I I f 

i I 

I I 

. 0 5  . 1 0  . 1 5  . 2 0  . 2 5  . 3 0  . 3 5  . 4 0  . 4 5  . 5 0  

77 
Fig. 3. Equation of state of the one-component hard-sphere fluid. ( - - )  CS equation; ( - )  

Eq. (4.26) (0 = 1 + �89 (O) simulation(14); ( [] ) equation of state obtain in ref. 5. 
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The individual virial coefficients predicted by Eq. (4.26) are not of high 
accuracy beyond fourth order. However, as shown in Fig. 3, compared with 
the CS equation the overall results are still very accurate, except near the 
hard-sphere freezing point. It also turns out that this equation of state is 
more accurate than that obtained in ref. 5. 

Following the procedures in Section 4.1, we have 

12rl s - -  27r /4  - -  12r/3 + 16r/2 + 16r/+ 4 
a -  4(1 --t/) 4 (4.27) 

d(a)  = K = 0.5625t/2 + 2.49r/3 + 5.87179t/4 + . . .  

2 0 ~  ~ ~ ~ ~ ~ ~ ~ ~ 

17 r/(24r/3 -- 89r/2 + 157r/- 98) (4.28) 
In y(0) =-~- ln(1 - q) 8(1 -- t/) 3 

Now, using Eqs. (4.4)-(4.7) with Eqs. (4.8)-(4.15), we examine the 
low-concentration limit, 

z = 5.3423 + 7.1821r/+ 15.231823r/2 + -.. (4.29) 

(4.30) 

18  

1 6  --' 

14  

12  

0 I I I I I I I I t 
0 .1 .2 .3 .4 .5 .6 .7 .8 .9 

F/O-  

.0 

Fig. 4. Plot  of d ( r ) / ~ l  2 when  q ~ 0 as a funct ion  of distance.  ( - - - )  Exact  resultl6); ( - )  results 
ob ta ined  by us ing Eq. (4.26); ( - - )  results ob ta ined  by us ing CS equa t ion  of state. 
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~d'(~)  = - K ( z +  1)=  - (3q2 + 17.34q 3 + 57.82q4 + .. .) (4.31) 

c(0) = - ( 1  + 8q + 30q 2 + 76q 3 + 149.73q 4 + ...) (4.32) 

461 q3 
d ( 0 ) = 1 7 q 2 + - - ~  - +842.574. . .  (4.33) 

For comparison, the low-concentration limiting values obtained by ref. 5 
(denoted as G G M )  are 

K ~176 = 0.463q 2 + -.. (4.34) 

z ~ = 3.184 + .. .  (4.35) 

ff[d'(ty)] GGM = -1.9r/2 (4.36) 

Therefore, all the low-concentration limiting values predicted by Eq. (4.26) 
are better than those obtained from the CS equation of state [Eqs. 
(4.21)-(4.25)] and from ref. 5 [Eqs. (4.34)-(4.36)] compared with the 

I0 , , , , , , , 

Fig. 5. 

.~. 4 
v 

~ 2 

- 2  

" ~ ,  

_ 4 | i i ~ ~ i ~ i I i 
o .I .2 .3 .4 .5 .6 .7 .8 .9 .0 

r/or 
Plot of In d(r) inside the core at different packing fractions. ( - - - )  Results obtained 

from ref. 4; ( - - )  from Eq. (4.26); ( - - )  from CS equation; ( . . . .  ) from ref. 5. 
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exact results [-Eqs. (3.29), (3.31), and (3.33)]. The coefficient ~n can be 
obtained from Eqs. (4.16a)-(4.16d). Figure 4 shows that the low-concen- 
tration limit of the tail function inside the core region is very close to the 
exact result obtained by ref. 6 and is better than that obtained from the CS 
equation of state. In Fig. 5, the tail function obtained from Eq. (4.26) is 
compared with that obtained from the CS equation of state, from ref. 5, 
and from the parametrization method of ref. 4. 

Our conclusion concerning the improvement in the results for d(r) 
inside the core region when one goes from use of the CS equation to a 
slightly less accurate equation of state is as follows. The one-Yukawa fit for 
c(r), r > or, is not accurate enough to support self-consistently an extremely 
accurate equation of state. If one used a two-Yukawa fit for c(r), r > a, this 
would no longer be the case. As yet, the algebra associated with the OZ 
equation with c(r) of two-Yukawa form is a bit too formidable for it to 
provide a convenient analytic approach to y(r), but further simplification 
appears possible. (20) 

A P P E N D I X  A 

From Eq. (2.3), we have, for o '2>o1, 

d a ( r )  I S  ;;2 -kr ['ty2-r { 'ffl+r ft~l 
dr = 2 + r  "~ 2-- r -~-JO-l+r-~-Jo-I  r "~ 

+ fro dt F2(t, r) 

= I + I I + I I I + I V + V + V I  

where 

r) F:(t, r) 

[ oo ('a2 + r 
I = ~ 2 + r  F:(t, r) dt, II = Jo2 r Fl(t,  r) dt 

o. - r fo_ r l + r  III -= F:(t, r) dt, IV = Fl(t, r) dt 
I + r  1 r 

~ l-- r ~ 
V =- F1(t, r) dt, V I -  Fz(t, r) dt 

F:(t, r) - t[(r  + t) L ( r  + t) + (t -- r) f l ( t  -- r ) ]  f2(t) 

F2( t, r) =- t[ (r + t) f l(r + t) - (r - t) f1(r -- t)]  f2(t) 

dt 

(A.I) 
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and we have used the condition r <  (o-2-0-1)/2, o-1/2. Then it is easy to 
prove [-notice that  f1(0-2)= f1(0-~-)= f l ( a 2 ) ,  f2(~rl)= f2(0-~-)=fz(~r{)] 

Therefore, 

For  0- 

~r I  r~O 

d I I  r~O 

d III r ~ 0 

d IV 
~ r~O 

d g  r~O dr 

d VI 
dr r~O 

= -2a~  A(G2)f2(0-;  ) 

= 2azf1(~2) f2(0-2 ) + 20-~f1(0-2) f2(aJ- ) 

= -2a2~A(~2) A ( ~ s  - 2a2f~(~r ~ - ) f2 (a l )  

= 2cr2A(cr ~ - ) f2(0-, ) + 20-2 fl(0-i - ) f2(al  ) 

= - 2 a 2 A ( a ;  ) A(~r,) 

= 0  

G"(0) = o 

= a2, the procedure is the same. We only give the result, 

G " ( 0 ) = - a 2 E f l ( a + ) - f l ( a  ) ] [ f 2 ( a + ) - f z ( a  )3 

(A.3) 

(A.4) 

APPENDIX B 

Expanding Eq. (2.10a) in terms of density, we have 

[ - c 3 ( r ) -  y3(r) + yl(r) y2(r)- [yl(r)]3/3, 
b3(r) 

_ c3(r ) -I-yl(r) y2(r)- [yl(r)]3/3, 

where 

b(r)=- ~ b,(r)~t" 
n=2 

y(r) =- ~ y,(r)q" 
n=0 

c(r)- ~ c,(r)rl" 
n = O  

r ~  
( B . 1 )  

(B.2) 

(B.3) 

(B.4) 
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5 ~  - -  i ~ i i i i i i I 

5O 

45 , 

40 ' ,  

35 " 

30 ' ,  

a s  

lo 

s 

o 
t 

- - 6 0  I F ~ I I I I I 
.2 .4 .g .g 1.0 1.2 1.4 1.6 1.8 2.0 

1"/O- 
Fig. 6. Numerical  b3(r/e ) [Eq. (B.1)] as a function of distance (r/e). The straight dashed line 
is obtained from the exact value of b3(0 ) and the exact slope of b3(r ) at r = 0 [Eqs. (3.24) and 
(3.10)]. 

Since all functions on the right-hand side of Eq. (B.1) are known either 
analytically or numerically, ~6) we can obtain a numerical assessment of 
b3(r ) easily. As seen in Fig. 6, the resulting b3(0)=51.516 is in good 
agreement with the exact analytical result 51.52. The derivative of the 
bridge function at r = 0, b'(0), obtained by the least-squares polynomial fit 
of the numerical b3(r) is about 52, however, which is in poor agreement 
with the exact result, 65.04, of Section 3. This must be due to numerical 
error in the available numerical assessment of c3(r) and y3(r). In Fig. 6 the 
numerical b3(r) is plotted and its slope is compared with the exact result of 
the slope at r = 0 (straight line). 
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